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XV,2 m s (0) 
R, tt, p) = p (1 + a%) crp 5 .-z-.-- Jr F COS(WC) do 0 

0 
(1 

The dispersion of quantity o,, can be found from the last formula by setting in it t ~.- 0 
and passing to the limit for p - 0 . We have 

The obtained results have a simple physical interpretation. The layer of elastic me- 
dium lying over the receiver is an additional filter which transmits only those compo- 
nents of the external random field of pressures which satisfy the inequality w > k,cz. 
This results in further suppression of low-frequency perturbations, as compared to the case 
when the receiver is directly subjected to a turbulent flow. 
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Two variational principles of Hamilton type are presented for a nonlinear theory 
of elasticity, which are combined variational principles of the initial and per- 
turbed states of elastic body motion. 

Variational formulations of problems to determine the perturbed state of stress 
for a specified initial linear state are well-known in statics. Variational formu- 
lations have also been considered recently for the cases of a nonlinear and time- 

dependent initial state of stress [l - 81. Only quantities in the perturbed state 

are subjected to variation in the appropriate variational principles. 
In order to avoid determining the initial state of stress in the definition of the 

neutral equilibrium state, varying second-order displacements were additionally 
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introduced in the statics of an elastic body [9]. It is shown [lo] that this same 

result is obtained in a more natural manner if an eq~~b~urn equation is appen- 
ded to the functional corresponding to the neutral equilibrium state by the me- 
thod of Lagrange multipliers. On the basis of equations from analytic mechanics, 
a combined variational formulation has recently been given [ll, 123 for the ini- 
tial and perturbed states of the motion of material points system. 

The ideas of the last two groups of papers are developed below. 

1, Inftfel vufntfonol principle. Let us consider an elastic body, V sub- 
jected to forces whose components remain invariant under deformation, relative to fixed 

curvilinear coordinate systemss,,za ,xs,We assume that the strains are so small that 
changes in the areas and volumes during the stress calculation can be neglected. Then 
the geometrically nonlinear problem is described by the following equations and condi- 

tions : 
v~~s*‘(s~‘+v~ui)l+xi-p~~i”=o, PEV, h< i<t‘z 

G.0 1) 

,ki = Eikji,_ 
2f’ 

Pik = ‘f:! (Vi?lk + Yyklli + ‘;;;iz&7k”t) 

ski(l’$ 4 v#) nk = @, P E s,, t, < t < t, (1.2) 

Ut= Ut, PES** tl<t<ta (J-3) 

uj (P, tl) = Ui’ (P), ui (P, tz) = Ut” (P), P E v (1.4) 

Here ui are displacement vector components, eik, Sik are components of the strain and 
stress tensors, XIK)~ are components of the elasticity tensor, &$ is the Kronecker sym- 
bol, Xi, Qi are components of the volume force and surface load vectors, refered to 

unit volume and surface of the undeformed body, respectively, Ui are given components 

of the displacement vector, Ui’, uie are given displacements for t = tl and t r t2, P 
is the density of the undeformed elastic body, P is a point in the domain V occupied 
by the undeformed body, S = S, + s, is the boundary surface of the undeformed body, 
S,, S, are parts of the surface where the external load and the displacements, respect- 
ively, are given, ni are unit vector components of the normal to the surface S, and Vi 
is the covariant differentiation sign in the metric of the undeformed body. 

The problem under consideration in nonlinear elasticity theory can be formulated by 
using a variational problem corresponding to the Hamilton principle as follows: find 

the stationary value of the functional 

under the conditions (1.3), (1.4). Equations (1. I) and the natural boundary conditions 
(1.2) written in displacements are the Euler-Ostrogradskii equations of the functional 

(1.5). 
Let us assume the magnitudes for the external effect Xi, Qi, Ui, ui’ui’ which causes 

a displacement ui of the elastic body, can be represented as the sum 7% is a small pa- 
rameter) Xi = X,i + rlyi, Qi = Qoi + nRi, c’i= Ui”+ ?Vi (I.61 

% ’ -_ uiY’ + qui’, ui* = UiO” + quio 

Correspondingly, we assume that the displacements ui can be expanded in a power series 



in a small parameter 
LLi -~ Ui” -f qci -t- rlZIPi + .,. (1.7) 

Substituting the quantities .Y c, Q’, L’i, ui’, ui”, l’i expressed in terms of the relation- 
ships (1. 6) and (1.7) into the functional (1.5), we obtain 

1 (II) =~ zo (Ug) +- yz, ([Lo, LJ) + $Z* (u,, 1;, IO) + . . . (1.3) 

Applying the method of small parameter and using the first three terms of (1.8), we see 
that the variational principle U(u)= 0 (I. 9) 
yields the following variational principles : 

81, (UrJ) = 0, 61, (u,, u) = 0, 6Z, (Q, c, /A =: 0 (1. 10) 

It is seen that the first of these principles differs from the initial variational principle 
(1.9) only by the notation. (Zero subscripts are ascribed to the appropriate quantities 

in(l.l)-(1.5)). 

2, First variational principle with varying initial and per- 
turbed motion rtrtea. Let us write the functional I,(u,, U) in conformity with 

the second of the variational principles (1. 10) 

The varying quantities tliU. Ui should satisfy the conditions (1.3) and (1.4), respectively, 

and conditions resulting from conditions (1.3) and (1.4) after taking account of (1. 6) 

“i (I’, f,) --- rl’ (I’), L’i (P, t,i ViN (Pi, f’ t- 1. 

The equations of the initial state of motion (the first equation of (1. 1)) and the equa- 

as well as the boundary conditions for the initial state (2.1) and the conditions 

ek’ (6ri + V&) nk + (s,“‘Y$) nk = Rt, ci@ . = +if,. (2.4) 
31 

p E s,. t1< t < (‘2 

are the stationarity conditions for the functional (2. 1). 
Thus, equations and conditions for both the initial as well as the perturbed states ori- 

ginate from the functional (2.1). Therefore, the variational principle (1.10) is the com- 
bined variational formulation for these states simultaneously. 

We note that an analogous variational principle has been postulated in (11, 121 for the 



equations of analytic mechanics. An attempt to formulate a variational principle simul- 
taneously for the initial and perturbed states for static problems of elasticity theory is 
made in [13], but only by using one varying state, which does not afford the possibility 
of obtaining the required results, 

8, Sraond variational prinoiplo with varying initlrl and prr- 
turbed motion rtrtaa, We write the functional 

t- 

12 (uo. v, w) = 1s (prroi’ 1 ui* + -y PVi’Vi . . 
- so’kpip - 

11 v 
(3.1) 

+ sikeik + .Yoiwi + YivJ dV dt + (Qoiwi + R$) dS dt 

pik = '12 (ViWk f VkWi + ViUo’VkWl + V~W’V~U~~ + ViV’VkVr) 

The varying quantities in the functional (3.1) are uiO, Uit Wir and the functions ui’, Vi) 
wi must satisfy the conditions (1.3),(1.4),(2.2), and 

wi = 0, P E s,, r1 < t < r, (3.2) 
wi (P, t1) = 9, ‘Ci (P, ta) = 0, P = V 

The stationarity conditions for the functional (3.1) are the three groups of equations: the 
equations of the initial state of motion (the first equation in (1. l)), the equation of the 
perturbed state of motion (2.3) and the equations 

VI, (tkl @li + vr”:)] + vk (sOk’v$) + vk (6”+) - Pwi” = ’ (3.3) 

PEV, t1 < t < 12 

as well as the appropriate boundary conditions (1.2), (2.4) and 

Zk’ (ali + c,uoi) nk + (sOkr~rwi) nk + (dk%rvi) “k = ’ (3.4) 

Tit = Eikj&, P E s,, t, < t -c t2 

We now consider all perturbations of external effects to be zero, i. e. we consider the 
problem of stability of an elastic body. If it is assumed in this case that the displace- 
ments of the initial state satisfy the first equation in (1.1) and the initial and boundary 

conditions (1.2) and (1.4), then a well-known form without the varying displacements Wi 

12’ (v) = \ \ ($ p&i’ - sO’“~~V~~~V~ - + aibeik) dV dt 

i, L 
can be given to the functional (3.1). 

Another possibility of transforming the functional (3.1) exists, where the additional 
conditions (3.2) - (3.4) are used in place of the additional conditions (1.1) - (1.4). 
An appropriate functional for linearized problems is presented in 19. lo]. This transfor- 
mation yields no essential simplification of the functional (3.1) in the general nonlinear 

case. 

REFERENCES 

1, Zu b o v , L . M . , Variational principles of the nonlinear theory of elasticity. Case of 
superposition of a small deformation on a finite deformation. PMM Vol. 35, N=” 5,19’71. 



702 L.. la. Ainola 

2. Guz’,O. M., On a variational principle of three-dimensional elastic stability 
theory for large subcritical strains. Dop. Akad. Nauk USSR, Ser. A, NE 3, 1971. 

3. Babich,I.Iu. and Guz’, 0. M., Variational principle of dynamical linear - 
ized elasticity theory problems for incompressible bodies under highly-elastic 
strains, Dop. Akad.Nauk USSR,Ser. A,Np 10, 19’71. 

4. Babich, 1.1~. and Guz’,O. M., On variational principles of the Khu - Va- 
shitsu type for linearized problems of highly-elastic deformations. Prikl. Mekhan. 
vol. 8, N” 3,1972. 

5, Guz’, A.N., Variational principles of linearized problems of elasticity theory 
for high initial strains, In: Mechanics of a Continuous Medium and Kindred Ana- 

lysis Problems, “Nauka” , Moscow, 1972. 

6. Guz’, A. N., Three-dimensional theory of elastic stability for finite subcritical 
strains, Prikl. Mekhan. , Vol. 8, Ne 12, 1972. 

7. Guz’, A. N., On the question of linearized problems of elasticity theory. Prikl. 

Mekhan. , Vol. 8, Nn 1, 1972. 
8. Guz’, A. N. , Stability of Elastic Bodies under Finite Strains. “Naukova Dumka” , 

Kiev, 1973. 
9. Alfutov, N. A. and Balabukh, L. I., Energy criterion of the stability of 

elastic bodies which do not require the determination of the initial stress-strain 

state. PMM Vol. 32, Nz 4,1968. 

10. Bolotin, V. V., On variational principles of elastic stability. In: Problems of 

the Mechanics of a Solid Deformed Body, Sudostroenie, Leningrad, 1970. 

11. Vujanovic, B., Synge’s disturbed equations as a variational problem and their 

first integrals. Bull. Acad. Roy. Belgique. Cl. Sci. , Ser. 5, Vol. 51, Ns 6, 1965. 

12. Djukid, D. , A contribution to the analytical mechanics of the disturbed motion. 

Bull. Acad. Roy. Belgique. Cl. Sci. Ser. 5, Vol. 58, Nz 1, 1972. 
13. Nemat-Nasser, S., On variational methods in finite and incremental elastic 

deformation problems with discontinuous fields. Quart. Appl. Math. , Vol. 36, N” 2, 

1972. 
Translated by M. D. F. 

UDC 539.3 

SOLUTION OF A HOMOGENEOUS BOUNDARY VALUE PROBLEM 
FOR THE SECTOR OF A TOXXML SHELL SEGMENT 

PMM vol. 40, NE 4, 1976, pp. 755-759 
V. M. BOGOMOL’NYI and R D. STEPANOV 

(Moscow) 
(Received March 17, 1975) 

Membrane forces in the segment of a thin toroidal shell loaded by an edge bend- 
ing load are determined from the particular solution of the fundamental differen- 
tial equation. Taking account of the asymptotic approximation of the special 
function in whose terms the particular solution is expressed, it is shown in [1] that 
the particular solution for a thin toroidal shell agrees with the membrane solution. 
In the general case, the tensile forces in a shell not closed in two coordinates are 
determined by membrane theory ; the membrane state of stress is determined 


